Corticotropin-releasing Factor (CRF) and Urocortin Promote the Survival of Cultured Cerebellar GABAergic Neurons Through the Type 1 CRF Receptor

نویسندگان

  • Jae-Sun Choi
  • Thao Thi Hien Pham
  • Yoon-Jin Jang
  • Bao Chi Bui
  • Bong-Hee Lee
  • Kyeong-Min Joo
  • Choong-Ik Cha
  • Kyung-Hoon Lee
چکیده

Corticotropin releasing factor (CRF) is known to be involved in the stress response and in some degenerative brain disorders. In addition, CRF has a role as a neuromodulator in adult cerebellar circuits. Data from developmental studies suggest a putative role for CRF as a trophic factor during cerebellar development. In this study, we investigated the trophic role for CRF family of peptides by culturing cerebellar neurons in the presence of CRF, urocortin or urocortin II. Primary cell cultures of cerebella from embryonic day 18 mice were established, and cells were treated for either 1, 5 or 9 days with Basal Medium Eagles complete medium alone or complete medium with 1 microM CRF, urocortin, or urocortin II. The number of GABA-positive neurons in each treatment condition was counted at each culture age for monitoring the changes in neuronal survival. Treatment with 1 microM CRF or 1 microM urocortin increased the survival of GABAergic neurons at 6 days in vitro and 10 days in vitro, and this survival promoting effect was abolished by treatment with astressin in the presence of those peptides. Based on these data, we suggest that CRF or urocortin has a trophic role promoting the survival of cerebellar GABAergic neurons in cultures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of the type 1 corticotropin releasing factor receptor (CRF-R1) in the embryonic mouse cerebellum.

Corticotropin releasing factor (CRF) is present in the adult, as well as in the embryonic and postnatal rodent cerebellum. Further, the distribution of the type 1 CRF receptor has been described in adult and postnatal animals. The focus of the present study is to determine the distribution and cellular relationships of the type 1 CRF receptor (CRF-R1) during embryonic development of the cerebel...

متن کامل

Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis.

Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) have opposing effects on stress and anxiety. Both can modify synaptic activity through their binding to NPY receptors (YRs) and CRF receptors (CRFRs) respectively. The bed nucleus of the stria terminalis (BNST) is a brain region with enriched expression of both NPY and YRs and CRF and CRFRs. A component of the "extended amygdala", th...

متن کامل

Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior

Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is involved in stress-related physiology and behavior, including control of the hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides, including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding pro...

متن کامل

CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface.

Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that...

متن کامل

Involvement of the corticotropin-releasing factor (CRF) type 2 receptor in CRF-induced thyrotropin release by the amphibian pituitary gland.

Corticotropin-releasing factor (CRF) is considered to be a main adrenocorticotropin-releasing factor in vertebrates. In non-mammalian species, CRF and related peptides cause the release of thyroid-stimulating hormone (TSH) from the anterior pituitary. The actions of CRF peptides are mediated by two G protein coupled receptors (CRF1 and CRF2) that have different ligand specificities. Using ligan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2006